Primary Lithium Batteries

Introduction
Lithium batteries are primary batteries that have lithium as an anode. These types of batteries are also referred to as lithium-metal batteries.They stand apart from other batteries in their high charge density (long life) and high cost per unit. Depending on the design and chemical compounds used, lithium cells can produce voltages from 1.5 V (comparable to a zinc–carbon or alkaline battery) to about 3.7 V.
Disposable primary lithium batteries must be distinguished from secondary lithium-ion and lithium-polymer, which are rechargeable batteries. Lithium is especially useful, because its ions can be arranged to move between the anode and the cathode, using an intercalated lithium compound as the cathode material but without using lithium metal as the anode material. Pure lithium will instantly react with water, or even moisture in the air; the lithium in lithium ion batteries is in a less reactive compound. Mistreatment during charging or discharging can cause outgassing of some of their contents, which can cause explosions or fire.
Primaries play an important role, especially when charging is impractical or impossible, such as in military combat, rescue missions and forest-fire services. Regulated under IEC 60086, primary batteries also service pacemakers in heart patients, tire pressure gauges in vehicles, smart meters, intelligent drill bits in mining, animal-tracking, remote light beacons, as well as wristwatches, remote controls, electric keys and children’s toys.
Most implantable pacemaker batteries are lithium-based, draw only 10–20 microamperes (µA) and last 5–10 years. Many hearing aid batteries are also primary with a capacity from 70–600mAh, good for 5–14 days before a replacement is needed. The rechargeable version offers less capacity per size and lasts for about 20 hours. Cost-saving is the major advantage.
High specific energy, long storage times and instant readiness give primary batteries a unique advantage over other power sources. They can be carried to remote locations and used instantly, even after long storage; they are also readily available and environmentally friendly when disposed.

Introduction
Lithium batteries are primary batteries that have lithium as an anode. These types of batteries are also referred to as lithium-metal batteries.They stand apart from other batteries in their high charge density (long life) and high cost per unit. Depending on the design and chemical compounds used, lithium cells can produce voltages from 1.5 V (comparable to a zinc–carbon or alkaline battery) to about 3.7 V.
Disposable primary lithium batteries must be distinguished from secondary lithium-ion and lithium-polymer, which are rechargeable batteries. Lithium is especially useful, because its ions can be arranged to move between the anode and the cathode, using an intercalated lithium compound as the cathode material but without using lithium metal as the anode material. Pure lithium will instantly react with water, or even moisture in the air; the lithium in lithium ion batteries is in a less reactive compound. Mistreatment during charging or discharging can cause outgassing of some of their contents, which can cause explosions or fire.
Primaries play an important role, especially when charging is impractical or impossible, such as in military combat, rescue missions and forest-fire services. Regulated under IEC 60086, primary batteries also service pacemakers in heart patients, tire pressure gauges in vehicles, smart meters, intelligent drill bits in mining, animal-tracking, remote light beacons, as well as wristwatches, remote controls, electric keys and children’s toys.
Most implantable pacemaker batteries are lithium-based, draw only 10–20 microamperes (µA) and last 5–10 years. Many hearing aid batteries are also primary with a capacity from 70–600mAh, good for 5–14 days before a replacement is needed. The rechargeable version offers less capacity per size and lasts for about 20 hours. Cost-saving is the major advantage.
High specific energy, long storage times and instant readiness give primary batteries a unique advantage over other power sources. They can be carried to remote locations and used instantly, even after long storage; they are also readily available and environmentally friendly when disposed.